## CONTEST \#1.

## SOLUTIONS

1-1. 100 The inequality can be solved to obtain $20 x \leq 2000 \rightarrow x \leq 100$. Thus, the answer is 100.

1-2. $\left\{\mathbf{- 1 , 2 \}}\right.$ need both This equation is of the form $A^{2}+B^{2}=(A+B)^{2}$, which has solutions only if $A=0$ or $B=0$. Therefore, instead of expanding the brackets and proceeding to solve a quadratic equation, instead solve two linear equations to find $x+1=0 \rightarrow x=-1$ and $x-2=0 \rightarrow x=2$. The solutions are $\{-\mathbf{1}, \mathbf{2}\}$.

1-3. 7 Suppose the length of one of the congruent sides is 3 and the non-congruent side has length 1 (which is minimal). In that case, the perimeter is $3+3+1=7$. If 3 is the length of the non-congruent side, then the minimum perimeter occurs if the congruent sides measure 2 (notice that a 1-1-3 triangle does not exist). The perimeter in this case is $2+2+3=7$. In either case, the perimeter is $\mathbf{7}$.

1-4. 84 Notice first that $\triangle E U R \sim \triangle E S A$ and the sides of the triangles are in the ratio $1: 2$, so the area of $\triangle E A S$ is $2^{2} \cdot 7=28$. Now, notice that $E$ is equidistant from $\overline{A U}$ and $\overline{U R}$, so those two triangles have areas in the same ratio as their bases, and $A U: U R=2: 1 \rightarrow$ the area of $\triangle A E U$ is $2 \cdot 7=14$. Because $\triangle S A U$ has area $28+14=42$, the area of square is $42 \cdot 2=\mathbf{8 4}$.

1-5. 7 The remainder when dividing by $x-4$ is the same as the function evaluated at 4 , so the remainder is $4^{3}-4 \cdot 4^{2}+12-5=\mathbf{7}$.
1-6. $\overline{\mathbf{3}}$ The roots are $q-d, q$, and $q+d$, so $r-p=2 d$ for the difference $d$ of the arithmetic progression. From Viete's formulas, we have the sum of the roots of this cubic equation is $\frac{3}{2}$, so the root $q$ is $\frac{1}{3} \cdot \frac{3}{2}=\frac{1}{2}$. The product of the roots is $\frac{-5}{32}$ by Viete's formulas, and this product is $q\left(q^{2}-d^{2}\right)$, so solve $\frac{1}{2}\left(\frac{1}{4}-d^{2}\right)=\frac{-5}{32}$ to obtain $d=\frac{3}{4}$. Therefore, $r-p=2 d=\frac{\mathbf{3}}{\mathbf{2}}$.

R-1. If $12 \%$ of a number is 144 , compute the number.
R-1Sol. 1200 Solving $\frac{144}{N}=\frac{12}{100}$ obtains $12 N=14400 \rightarrow N=1200$.

R-2. Let $N$ be the number you will receive. If $N=A \cdot B$ ! for some positive integers $A$ and $B$, compute the least possible value of $A$.
R-2Sol. 10 To minimize $A$, maximize $B$. To maximize $B$, look for the greatest factorial that divides $N$. Substituting, we see that $1200=10 \cdot 5$ !, so $A=\mathbf{1 0}$.

R-3. Let $N$ be the number you will receive. When the hands of a standard clock are at $N$ o'clock, compute the measure of the supplement of the acute angle between the hands.
R-3Sol. 120 Substituting, at $10: 00$, the hands are separated by $1 / 3$ of $180^{\circ}$, or 60 degrees. The supplement measures $180-60$ or $\mathbf{1 2 0}$ degrees.

R-4. Let $N$ be the number you will receive. Compute the least positive integer $x$ such that $\sqrt{2 N+x^{2}}$ is a whole number.
3-4Sol. 4 Substituting, look for $x$ such that $\sqrt{240+x^{2}}$ is a whole number. The least $x$ that satisfies the conditions of the problem is $x=4$, in which case $\sqrt{256}=16$ is a whole number.

R-5. Let $N$ be the number you will receive. A set of $N$ consecutive whole numbers has a sum of 2018. Compute the greatest of the whole numbers.

R-5Sol. 506 Substituting, there are 4 consecutive whole numbers, whose sum is $x+x-1+x-2+x-3=4 x-6=2018$. Solving, $x=506$.

