CONTEST #1.

SOLUTIONS

1 - 1. [100] The inequality can be solved to obtain $20x \le 2000 \rightarrow x \le 100$. Thus, the answer is **100**.

1 - 2. $\{-1, 2\}$ need both This equation is of the form $A^2 + B^2 = (A + B)^2$, which has solutions only if A = 0 or B = 0. Therefore, instead of expanding the brackets and proceeding to solve a quadratic equation, instead solve two linear equations to find $x + 1 = 0 \rightarrow x = -1$ and $x - 2 = 0 \rightarrow x = 2$. The solutions are $\{-1, 2\}$.

1 - 3. 7 Suppose the length of one of the congruent sides is 3 and the non-congruent side has length 1 (which is minimal). In that case, the perimeter is 3 + 3 + 1 = 7. If 3 is the length of the non-congruent side, then the minimum perimeter occurs if the congruent sides measure 2 (notice that a 1-1-3 triangle does not exist). The perimeter in this case is 2 + 2 + 3 = 7. In either case, the perimeter is **7**.

1 - 4. 84 Notice first that $\triangle EUR \sim \triangle ESA$ and the sides of the triangles are in the ratio 1 : 2, so the area of $\triangle EAS$ is $2^2 \cdot 7 = 28$. Now, notice that *E* is equidistant from \overline{AU} and \overline{UR} , so those two triangles have areas in the same ratio as their bases, and $AU : UR = 2 : 1 \rightarrow$ the area of $\triangle AEU$ is $2 \cdot 7 = 14$. Because $\triangle SAU$ has area 28 + 14 = 42, the area of square is $42 \cdot 2 = 84$.

1 - 5. 7 The remainder when dividing by x - 4 is the same as the function evaluated at 4, so the remainder is $4^3 - 4 \cdot 4^2 + 12 - 5 = 7$.

1 - 6. $\begin{bmatrix} \frac{3}{2} \end{bmatrix}$ The roots are q - d, q, and q + d, so r - p = 2d for the difference d of the arithmetic progression. From Viete's formulas, we have the sum of the roots of this cubic equation is $\frac{3}{2}$, so the root q is $\frac{1}{3} \cdot \frac{3}{2} = \frac{1}{2}$. The product of the roots is $\frac{-5}{32}$ by Viete's formulas, and this product is $q(q^2 - d^2)$, so solve $\frac{1}{2}\left(\frac{1}{4} - d^2\right) = \frac{-5}{32}$ to obtain $d = \frac{3}{4}$. Therefore, $r - p = 2d = \frac{3}{2}$.

Author: George Reuter - coachreu@gmail.com - Reviewer: Michael Curry - currymath@gmail.com

R-1. If 12% of a number is 144, compute the number. **R-1Sol. [1200]** Solving $\frac{144}{N} = \frac{12}{100}$ obtains $12N = 14400 \rightarrow N = 1200$.

R-2. Let N be the number you will receive. If $N = A \cdot B!$ for some positive integers A and B, compute the least possible value of A.

R-2Sol. [10] To minimize A, maximize B. To maximize B, look for the greatest factorial that divides N. Substituting, we see that $1200 = 10 \cdot 5!$, so A = 10.

R-3. Let N be the number you will receive. When the hands of a standard clock are at N o'clock, compute the measure of the supplement of the acute angle between the hands. **R-3Sol. 120** Substituting, at 10 : 00, the hands are separated by 1/3 of 180° , or 60 degrees. The supplement measures 180 - 60 or **120** degrees.

R-4. Let N be the number you will receive. Compute the least positive integer x such that $\sqrt{2N+x^2}$ is a whole number.

3-4Sol. 4 Substituting, look for x such that $\sqrt{240 + x^2}$ is a whole number. The least x that satisfies the conditions of the problem is x = 4, in which case $\sqrt{256} = 16$ is a whole number.

R-5. Let N be the number you will receive. A set of N consecutive whole numbers has a sum of 2018. Compute the greatest of the whole numbers.

R-5Sol. [506] Substituting, there are 4 consecutive whole numbers, whose sum is x + x - 1 + x - 2 + x - 3 = 4x - 6 = 2018. Solving, x = 506.